SOHCAHTOA (TRIGONOMETRY)

Pearson Edexcel - Thursday 4 June 2020 - Paper 2 (Calculator) Higher Tier

1.

5	99.5	MI	for $\sin (34) = \frac{x}{178}$ oe or alternative method to find x	-
		A1	for answer in range 99.5 to 99.7	If an answer in the range 99.5 to 99.7 is given in the working space then incorrectly rounded, award full marks

Pearson Edexcel – Thursday 4 June 2020 - Paper 2 (Calculator) Higher Tier

2.

13	15.4	M1	for $\frac{AB}{\sin 34} = \frac{23.8}{\sin"120"}$ or $\frac{\sin 34}{AB} = \frac{\sin"120"}{23.8}$	"120" comes from 180 – 26 – 34
		M1	for $(AB =)$ $\frac{23.8}{\sin"120"} \times \sin 34$	
		A1	for answer in range 15.36 to 15.4	If an answer in the range 15.36 to 15.4 is given in the working space then incorrectly rounded, award full marks

Pearson Edexcel - Tuesday 21 May 2019 - Paper 1 (Non-Calculator) Higher Tier

3.

14	$\frac{1}{2}$	M1	for $\frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{2}$ or $\frac{\sqrt{3}}{3} \times \frac{\sqrt{3}}{2}$ or $(\frac{1}{2} \div \frac{\sqrt{3}}{2}) \times \frac{\sqrt{3}}{2}$	
			OR $\tan 30 = \frac{1}{\sqrt{3}}$ or $\sin 60 = \frac{\sqrt{3}}{2}$	
		A1	for $\frac{1}{2}$ or 0.5	

Pearson Edexcel - Thursday 6 June 2019 - Paper 2 (Calculator) Higher Tier

4.

5	5	9.85	M1	for $\sin (38) = \frac{AB}{16}$ oe or alternative method to find AB for an answer in the range 9.76 to 9.92	·

Pearson Edexcel - Thursday 6 June 2019 - Paper 2 (Calculator) Higher Tier

19	31.0	P1	for tan 35 = BE ÷ 15 or BE = 10.5(0) OR finding the length DM = $\frac{2}{5} \times 15(=6)$ or MA = $\frac{3}{5} \times 15(=9)$ or 6:9	$MB = \sqrt{9^2 + 15^2} = \sqrt{306} (=17.4(9) \text{ or } 17.5)$ $BE = 15 \times \tan 35 (=10.5(0))$ $AE = 15 \div \cos 35 (=18.3(1))$
			OR showing the required angle on a diagram eg with an arc	$ME = \sqrt{9^2 + 18.31 \dots^2} = \sqrt{416.(3 \dots)}$ (=20.4(0))
		Pl	for $MB = \sqrt{15^2 + "9"^2} \text{ or } \sqrt{306} \text{ or } 17.4(9)$ OR $ME = \sqrt{"9"^2 + "18.3(1)}^{"2} \text{ or } \sqrt{416.(3)} \text{ or } 20.4(0)$	Check diagram for working
		Pl	for using appropriate trigonometry ratio to set up an equation in angle EMB eg tan θ = "10.5(0)" + "17.4(9)" or $\cos\theta$ = "17.4(9)" + "20.4(0)" or $\sin\theta$ = "10.5(0)" + "20.4(0)"	
		Al	for answer in the range 30.9 to 31	If an answer is shown in the range in working and then incorrectly rounded award full marks.

Pearson Edexcel - Tuesday 6 November 2018 - Paper 1 (Non-Calculator) Higher Tier

6.

8	(a)	1	B1	cao	
	(b)	8	M1	starts process, eg $cos(60) = \frac{4}{x}$ or $0.5 = \frac{4}{x}$ oe or $sin 30 = \frac{4}{x}$ or $cos \frac{sin 30}{4} = \frac{sin 90}{x}$ oe $cos \frac{sin 30}{4} = \frac{sin 90}{x}$	All three elements of \cos , 4, x must be present in an equation. eg $\cos = 4/x$ is acceptable but $\cos(4/x)$ is insufficient

Pearson Edexcel - Monday 12 November 2018 - Paper 3 (Calculator) Higher Tier

7.

6	17.3	P1	for full process to find either angle eg $(180-90) \div (2+3) \times 2$ (=36) or for 36 or 54 seen as an angle	May be seen on diagram Condone correct values if incorrectly placed.
		P1	for a correct equation using trigonometry eg cos [A] = $14 \div AB$	This must be shown as an equation with all four elements (eg cos, [A], 14, AB) present. [A] could be 36 or any angle clearly and unambiguously identified as A. This also applies to [B] with Sine.
		P1	(dep previous P mark) for rearranging their trigonometry equation to make AB the subject eg $(AB=)$ "14 \div cos 36"	
		A1	for an answer in the range 17.3 to 17.4	If an answer is shown in the range in working and then incorrectly rounded award full marks.

Pearson Edexcel - Thursday 7 June 2018 - Paper 2 (Calculator) Higher Tier

10.2	99999		The state of the s	
18	39.5	P1	for a start to a process eg, for a correct trigonometric statement, eg $\sin 48 = \frac{7.3}{AC}$ or $\cos 42 = \frac{7.3}{AC}$ or $\frac{AC}{\sin 90} = \frac{7.3}{\sin 48}$ OR angle CAH unambiguously identified on a diagram	Must include correct values
		Pl	for a complete correct process to find AC , eg $(AC =) \frac{7.3}{\sin(48)}$ (=9.8) or $(AC =) \frac{7.3}{\cos(42)}$ (=9.8) or $(AC =) \sin 90 \times \frac{7.3}{\sin 48}$ (=9.8)	
		P1	for a correct statement using angle <i>CAH</i> , eg tan(<i>CAH</i>) = $\frac{8.1}{^{*9.8}}$ OR $\sqrt{8.1^2 + ^{*9}.8^{*2}}$ (=12.7) and $\frac{\sin CAH}{8.1} = \frac{\sin 90}{^{*12.7^{*}}}$	
		A1	for answer in the range 39.5 – 39.51	If an answer is given in the range but then incorrectly rounded award full marks.

Pearson Edexcel - Tuesday 12 June 2018 - Paper 3 (Calculator) Higher Tier

9.

19	5 3	P1	for process to derive an equation in x, $\operatorname{eg} \frac{x}{4x-1} = \frac{6x+5}{12x+31}$	
		P1	for complete process to remove fractions, eg $x(12x+31) = (6x+5)(4x-1)$	Must be correct use of brackets
		P1	for process to reduce to a quadratic equation, eg $12x^2 - 17x - 5 = 0$	Award for correct LHS only.
		PI	for process to solve the quadratic equation by factorisation or use of quadratic formula, eg $(4x+1)(3x-5)=0$	Award for correct LHS only. Accept substitution into the formula; $\frac{17\pm\sqrt{(-17)^2-4\times12\times-5}}{2\times12}$
		Al	for $\frac{5}{3}$ oe	Accept answers in the range 1.66 to 1.67 as equivalent

Pearson Edexcel - Monday 6 November 2017 - Paper 2 (Calculator) Higher Tier

7	32.3	Pl	for using Pythagoras to find length of third side of triangle, eg $7.5^2 - 6^2$ or $6^2 + x^2 = 7.5^2$ or uses trigonometry to find angle in triangle, eg sin $A = \frac{6}{7.5}$ or cos $B = \frac{6}{7.5}$
		P1	(dep P1) for complete process to find length of third side of triangle eg $\sqrt{7.5^2-6^2}$ or $\sqrt{56.25-36}$ or $\sqrt{20.25}$ (= 4.5) or uses trigonometry to find base length of triangle, eg $7.5 \times \sin "B"$ or $\frac{6}{\tan "A"}$
		P1 P1 A1	(dep P2) for $24 - 10 - 4.5$ (= 9.5) (indep) for process to find angle <i>CDA</i> , eg tan <i>CDA</i> = $\frac{6}{\text{base}}$ from right- angled triangle for answer in the range 32.2 to 32.3

Pearson Edexcel - Wednesday 8 November 2017 - Paper 3 (Calculator) Higher Tier

11.

17		14.4	P1	for start of process, eg $0.5 \times 11 \times CD \times \sin 105 = 56$
			P1 P1	for complete process to find CD , eg $(CD =)$ $\frac{56}{0.5 \times 11 \times \sin 105}$ oe $(= 10.54)$ for process to find AC , eg $(AC^2 =) 11^2 + [CD]^2 - 2 \times 11 \times [CD] \times \cos 105$ $(AC = 17.09)$
			P1 A1	for process to find AB, eg $\frac{AB}{\sin 48} = \frac{[AC]}{\sin 118}$ answer in range 14.3 to 14.4

Pearson Edexcel - Sample Paper 2 - (Calculator) Higher Tier

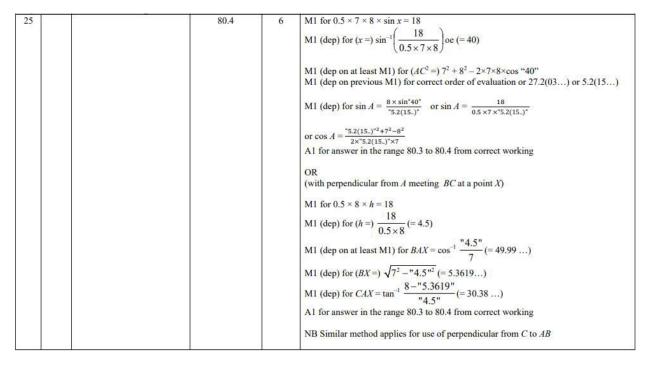
12.

2	2	20.9	M1	correct recall of appropriate formula eg $\sin x = \frac{5}{14}$
			A1	for 20.9(248)
		4		

Pearson Edexcel - Specimen Papers Set 1 - Paper 1 (Non-Calculator) Higher Tier

13.

7 (a)	$\frac{\sqrt{3}}{2}$	B1
(b)	6	M1 starts process eg sin $30 = \frac{x}{12}$ A1 answer given


Pearson Edexcel - Thursday 9 June 2016 - Paper 2 (Calculator) Higher Tier

14.

17	30.1	4	M1 for a correct trigonometric statement to find an unknown angle, eg. $\sin(30+x)$ or $\cos A = \frac{10.4 + 5.2}{18}$ or $\frac{\sin ADC}{18} = \frac{\sin 30}{10.4}$ M1 for a complete method to find the angle, eg. $\sin^{-1}\left(\frac{10.4 + 5.2}{18}\right)$ (= 60.07) or $\cos^{-1}\left(\frac{10.4 + 5.2}{18}\right)$ (= 29.92) or $\sin^{-1}\left(\frac{18 \times \sin 30}{10.4}\right)$ (= 59.92 or $180 - 59.92$ = 120.07) M1 (dep on M2) for a fully complete method to find angle x , eg. " $60.07.$ ". -30 or $60 - "29.92.$ " or $90 - "59.92.$." A1 for answer in the range 30.07 to 30.1 OR M1 for (BC^2) $18^2 - (10.4 + 5.2)^2$ or $BC^2 + (10.4 + 5.2)^2 = 18^2$ M1 for (BC) $\sqrt{18^2 - (10.4 + 5.2)^2}$ (= 8.97) M1 (dep on M2) for a fully complete method to find angle x , eg. $\tan^{-1}\left(\frac{5.2}{r_8.97}\right)$ A1 for answer in the range 30.07 to 30.1	
----	------	---	--	--

Pearson Edexcel - Thursday 9 June 2016 - Paper 2 (Calculator) Higher Tier

15.

Pearson Edexcel - Friday 14 June 2013 - Paper 2 (Calculator) Higher Tier

16.

20	$\cos y = 2.25 \div 6$ $y = \cos^{-1} (2.25 \div 6)$ OR $6\cos 75 = 1.55$	The ladder is not safe because y is not near to 75	3	M1 for $\cos y = 2.25 \div 6$ oe M1 for $\cos^{-1}(2.25 \div 6)$ C1 for sight of 67-68 and a statement eg this angle is NOT (near to) 75° and so the ladder is not steep enough and so not safe. OR M1 for $\cos 75 = x \div 6$ M1 for $6\cos 75$ C1 for sight of 1.55(29) and a statement eg that 2.25 NOT (near to) 1.55 and so the ladder is not steep enough and so not safe.
----	--	--	---	---

Pearson Edexcel - Wednesday 13 June 2012 - Paper 2 (Calculator) Higher Tier

16	$\cos x = \frac{6.4}{9.6}$	48.2	3	M1 for $\cos x = \frac{6.4}{9.6}$ or $\cos x = 0.66(6)$ or $\cos x = 0.67$
	$x = \cos^{-1} \frac{6.4}{9.6} =$			M1 for cos ⁻¹ $\frac{6.4}{9.6}$ or cos ⁻¹ 0.66(6) or cos ⁻¹ 0.67 A1 for 48.1 – 48.2
				OR Correct use of Pythagoras and then trigonometry, no marks until
				M1 for $\sin x = \frac{'7.155'}{9.6}$ or $\tan x = \frac{'7.155'}{6.4}$ or $\sin x = \frac{'7.155'}{9.6} \times \sin 90$
				or $\cos x = \frac{6.4^2 + 9.6^2 - 7.155^2}{2 \times 6.4 \times 9.6}$
				M1 for $\sin^{-1} \frac{'7.155'}{9.6}$ or $\tan^{-1} \frac{'7.155'}{6.4}$ or $\sin^{-1} \left(\frac{'7.155'}{9.6} \times \sin 90\right)$
				or $\cos^{-1}\left(\frac{6.4^2 + 9.6^2 - 7.155'^2}{2 \times 6.4 \times 9.6}\right)$
				A1 for 48.1 – 48.2 SC B2 for 0.841 (using rad) or 53.5 (using grad)

Pearson Edexcel - Monday 5 March 2012 - Paper 4 (Calculator) Higher Tier

14	(a)	$\tan x = \frac{8}{12} = 0.666$	33.7	3	M1 for $\tan x = \frac{8}{12}$ or $\tan x = 0.66(6)$ or $\tan x = 0.67$
		$x = \tan^{-1} 0.6666 =$			M1 for $\tan^{-1}\left(\frac{8}{12}\right)$ or $\tan^{-1} 0.66(6)$ or $\tan^{-1} 0.67$
					A1 for answer in range 33.6 to 33.7
					OR
					If using Pythagoras and trigonometry, then no marks until
					M1 for $\sin x = \frac{8}{14.4}$ or $\cos x = \frac{12}{14.4}$
					$or \sin x = \frac{8}{14.4} \times \sin 90$
					M1 for $\sin^{-1} \frac{8}{14.4}$ or $\cos^{-1} \frac{12}{14.4}$
					$\operatorname{or} \sin^{-1} \left(\frac{8}{14.4} \times \sin 90 \right)$
					A1 for answer in range 33.6 to 33.7
					(SC B2 for 0.588(using rad) or 37.4(using grad))
					(See B2 101 0.500(using fluid) 01 57.4(using grad))

1.4	(16)	5	9.44	2	5 5
14	(b)	$\sin 32 = \frac{5}{YZ}$	9.44	3	M1 for $\sin 32 = \frac{5}{YZ}$ or $\cos 58 = \frac{5}{YZ}$
		YZ			YZ YZ
		$YZ = \frac{5}{\sin 32} = 9.435\ 399\ 57$			M1 for $(YZ =) \frac{5}{\sin 32}$ or $(YZ =) \frac{5}{\cos 58}$
		SIII 32			A1 for answer in range 9.43 to 9.44
					OR
					M1 for $\frac{5}{\sin 32} = \frac{YZ}{\sin 90}$ or $\frac{\sin 32}{5} = \frac{\sin 90}{YZ}$
					M1 for $(YZ =)\frac{5}{\sin 32} \times \sin 90$
					SECTION SECTIO
					A1 for answer in range 9.43 to 9.44
					OR
					M1 for $(YZ^2 =) 5^2 + "(\frac{5}{\tan 32})"^2$ or $5^2 + 8(.00)^2$ seen
					or 89(.0) seen
					M1 for $(YZ =)$ $5^2 + "\left(\frac{5}{\tan 32}\right)^{n/2}$
					or $\sqrt{5^2 + 8(.00)^2}$ seen or $\sqrt{89(.0)}$ seen
					A1 for answer in range 9.43 to 9.44
					(SC B2 for 9.06(using rad) or 10.3(using grad))
					(SC D2 for 9.00(using rad) of 10.5(using grad))
					NB: Equivalent methods using 58° should be credited
22					accordingly

Pearson Edexcel - Tuesday 10 November 2009 - Paper 4 (Calculator) Higher Tier

19.

23	$\cos x = \frac{8.2}{10.6} = 0.77358\dots$	39.3	3	M1 for $\cos x = \frac{8.2}{10.6}$ or $\cos \frac{8.2}{10.6}$
	$x = \cos^{-1} \frac{8.2}{10.6} = 39.323\dots$			M1 for cos ⁻¹ 8.2 A1 for 39.3 – 39.33 SC: M2A0 for 0.686 or 43.69 or 39.2 or 39.37 or 39.4

OCR GSCE – Thursday 7 November 2019 – Paper 5 (Non-Calculator) Higher Tier

19	(a)	$\frac{1}{\sqrt{2}}$ or $\frac{\sqrt{2}}{2}$ final answer	1		
19	(b)	10 nfww	6	B3 for BD = $10 \sqrt{2}$ oe or M2 for $10 \sqrt{6} \times \tan 30$ oe or M1 for $\frac{BD}{10\sqrt{6}} = \tan 30$ oe AND M2 for BC = $\sqrt{\frac{their BD^2}{2}}$ oe or their BD \times their $\sin 45$ oe or M1 for BC ² + CD ² = $(their BD)^2$ or for $\frac{BC}{their BD} = their \sin 45$	Allow use of other variables for BC and CD (possibly different)

OCR GSCE – Tuesday 11 June 2019 – Paper 6 (Calculator) Higher Tier

21.

5	Answer which rounds to 61.6 nfww	3	M2 for $\tan^{-1}(\frac{37}{20})$ oe	Condone answer of 62 only if correct working seen
			M1 for $\tan[x =] \frac{37}{20}$ oe	Answers of 68.5 or 68.4(5) [grads] or 1.08 or 1.07(5) [rads] imply M2
			If M0 scored then SC1 for answers 28.4, 28 or angles that round to 28.4 if correct working seen.	Alternative method After correct method for Pythagoras soi by 42.0 to 42.1 M2 for $\sin^4(\frac{37}{thetr \sqrt{20^2+37^2}})$ or $\cos^4(\frac{20}{thetr \sqrt{20^2+37^2}})$ or or M1 for $\sin[x=]\frac{37}{thetr \sqrt{20^2+37^2}}$ or $\cos[x=]\frac{20}{thetr \sqrt{20^2+37^2}}$ or M 0 for just Pythagoras reaching
				AC = 42.0 to 42.1 Do not condone answer of 62 following an interim answer seen that does not round to 61.6
				0 for scale drawing

OCR GSCE – Sample Papers – Paper 5 (Non - Calculator) Higher Tier

22.

17	(a)	√3	1 1 AO1.1		
	(b)	24√3	4 4 AO1.3b	M1* for $\frac{\text{height}}{4\sqrt{3}} = \text{their} \tan 60^\circ$	
				A1 for 12 or $4\sqrt{3} \times \sqrt{3}$	
				*M1 Dep for $\frac{1}{2} \times 4\sqrt{3} \times their$ '12'	

OCR GSCE – Sample Papers – Paper 6 (Calculator) Higher Tier

23.

13		9.2(0)	5 3 AO1.3b 2 AO3.1b	M1 for $\frac{6.3}{\sin 33}$ A1 for 11.567() soi M1 dep *for evidence of cosine rule used M1 for their '11.6' ² + 8.4 ²	rot to 3 or more sf *Dep on 1st M1 84.7() seen implies 4
				- 2 × their '11.6' × 8.4 × cos 52	

AQA GSCE – Tuesday 19 May 2020 – Paper 1 (Non - Calculator) Higher Tier

	Alternative method 1						
	\cos and $\frac{9}{18}$ oe identified	M1					
	60	A1					
	Alternative method 2						
5	sin and $\frac{\sqrt{18^2 - 9^2}}{18}$ identified or tan and $\frac{\sqrt{18^2 - 9^2}}{9}$ identified	M1					
	60	A1					
	Add						
	Accept an embedded answer, eg cos	M1A1					
	180 ÷ 3 = 60			M0A0			

AQA GSCE – Tuesday 19 May 2020 – Paper 1 (Non - Calculator) Higher Tier


25.

Q	Answer	Mark	Comments
24	$\sin y > 0$ and $\cos y < 0$	B1	

AQA GSCE – Tuesday 21 May 2019 – Paper 1 (Non - Calculator) Higher Tier 26.

	$\sin 60^{\circ} = \frac{\sqrt{3}}{2}$ or $\tan 30^{\circ} = \frac{\sqrt{3}}{3}$ or $\frac{1}{\sqrt{3}}$ or $\tan 30^{\circ} (= \frac{\sin 30}{\cos 30}) = \frac{\frac{1}{2}}{\sqrt{3}}$	M1	oe may be in a table may be implied by position in multiplication
27	$\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{3}} = \frac{1}{2}$ or $\cos x = \frac{1}{2}$ or $(x =) \cos^{-1} \frac{1}{2}$	M1dep	oe works out the value of cos x as a fraction or decimal with no surd values
	60 with M2 awarded	A1	
	Add	ditional G	Guidance
	$\cos x = 60$ does not score the final m	ark	

AQA GSCE – Tuesday 6 November 2018 – Paper 1 (Non - Calculator) Higher Tier 27.

AQA GSCE – Tuesday 6 November 2018 – Paper 1 (Non - Calculator) Higher Tier 28.

27(a)	-k	B1	
27(b)	k	B1	

AQA GSCE – Thursday 8 November 2018 – Paper 2 (Calculator) Higher Tier 29.

	tan 49 = AC 16	M1	oe eg tan (90 – 49) = $\frac{16}{AC}$ or $AC^2 + 16^2 = \left(\frac{16}{\cos 49}\right)$)²
	tan 49 × 16 or [18.4, 18.41]	M1dep	oe eg $\frac{16}{\tan(90-49)}$ or $\sqrt{\left(\frac{16}{\cos 49}\right)^2 - 16^2}$	
25	$\frac{\sin x}{\text{their [18.4,18.41]}} = \frac{\sin 35}{20}$ or $\frac{\text{their [18.4,18.41]}}{\sin x} = \frac{20}{\sin 35}$	M1dep	oe eg $\frac{\sin x}{16 \tan 49} = \frac{\sin 3}{20}$ dep on 1st M1	35
	$\sin x = \frac{\sin 35}{20} \times \text{their} [18.4, 18.41]$	M1dep	oe eg sin $x = \frac{16 \tan 49}{20}$ or sin ⁻¹ $\left(\frac{\sin 35}{20} \times \text{their } [1 \text{ or sin}^{-1} [0.527, 0.528] \right)$ dep on 1st and 3rd M1	
	[31.8, 31.9]	A1	allow 32 with full method	seen
	Add	ditional G	Buidance	
	Answer [31.8, 31.9] possibly from sca	ale drawin	g	5 marks
	Answer 32 possibly from scale drawing	ng		Zero

AQA GSCE – Monday 12 November 2018 – Paper 3 (Calculator) Higher Tier 30.

	$\cos x = \frac{9}{10}$	M1	oe eg $\sin x = \frac{\sqrt{10^2 - 9^2}}{10}$ $\tan x = \frac{\sqrt{10^2 - 9^2}}{9}$	
11	25.8 or 26	A1		
	Add	ditional G	uidance	
	$\cos = \frac{9}{10} x = 25.8 \text{ (recovered)}$			M1A1
	$\cos = \frac{9}{10}$			M0A0

AQA GSCE – Monday 24 May 2018 – Paper 1 (Non - Calculator) Higher Tier 31.

	$\frac{\sqrt{3}}{2} \times \sqrt{3} + \frac{1}{2}$ $= \frac{3}{2} + \frac{1}{2}$ $= 2$	В3	B2 $\frac{\sqrt{3}}{2} \times \sqrt{3} + \frac{1}{2}$ B1 $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$ or tar or $\sin 30^{\circ} = \frac{1}{2}$	n 60°=√3
	Additional Guidance For B3 all steps must be shown			
30				
30	Allow $\frac{\sqrt{3}}{2} \times \sqrt{3} + \frac{1}{2}$ given as $\frac{\sqrt{3}}{2} \times \sqrt{3}$, followed by their $\frac{3}{2} + \frac{1}{2}$			
	Allow equivalent expressions for all trig values			
	eg			
	$\cos 30^\circ = \sqrt{\frac{3}{4}} \sin 30^\circ = \frac{\sqrt{1}}{2} \tan 60^\circ = \frac{\sqrt{3}}{\sqrt{1}}$			
	For B1 allow the trig value(s) given in a table unless contradicted in working			_

AQA GSCE – Thursday 2 November 2017 – Paper 1 (Non - Calculator) Higher Tier 32.

	(180, 0)	B1		
	Additional Guidance			
29(a)	Condone degrees symbol on 180			
	Condone (π , 0)	B1		
	(–270, 1)	B1		
	Additional Guidance			
29(b)	29(b) Condone degrees symbol on 270			
	Condone $(\frac{-3\pi}{2}, 1)$			B1

AQA GSCE – Thursday 6 November 2017 – Paper 2 (Calculator) Higher Tier 33.

9	$\tan x = \frac{3}{7} \text{ or } \tan^{-1} \frac{3}{7}$ $\operatorname{or } \sin x = \frac{3(\sin 90)}{\sqrt{3^2 + 7^2}}$ $\operatorname{or } \sin x = \frac{3(\sin 90)}{\sqrt{58}}$ $\operatorname{or } \cos x = \frac{7}{\sqrt{3^2 + 7^2}}$ $\operatorname{or } \cos x = \frac{7}{\sqrt{58}}$ $\operatorname{or } 90 - \tan^{-1} \frac{7}{3}$ $\operatorname{or } 90 - [66.7, 66.81]$ $\operatorname{or } 90 - 67$	M1	eg $\cos x = \frac{7^2 + \left(\sqrt{7^2 + 3}\right)}{2 \times \sqrt{3^2 + 7}}$ Any letter	$\frac{\sqrt{2}}{\sqrt{2}} \times 7$
	[23, 23.3]	A1		
	Add	ditional G	Guidance	
	$\tan = \frac{3}{7}$ or $\tan \frac{3}{7}$ or $\tan^{-1} = \frac{3}{7}$ (u	nless reco	overed)	МО
	Answer [23, 23.3] (possibly coming f	rom scale	drawing)	M1A1
	If using sine rule must rearrange to	$\sin x = f$	or M1	
	If using cosine rule must rearrange to	$\cos x =$	for M1	
	Allow [0.42, 0.43] for $\frac{3}{7}$			
	Allow 2.33 for $\frac{7}{3}$			
	Allow [7.6, 7.62] for $\sqrt{3^2 + 7^2}$			

AQA GSCE – Wednesday 25 May 2017 – Paper 1 (Non - Calculator) Higher Tier 34.

	$\sin 45 = \frac{\sqrt{2}}{2} \text{ or } \frac{1}{\sqrt{2}}$ $\text{or } \tan 45 = 1 \text{ or } \frac{1}{1}$ $\text{or } \tan 60 = \sqrt{3} \text{ or } \frac{\sqrt{3}}{1}$	B1	oe stated or in correct place in implied by multiplier of 2 or	
	$\sin 45 = \frac{\sqrt{2}}{2} \text{ or } \frac{1}{\sqrt{2}}$ and $\tan 45 = 1 \text{ or } \frac{1}{1}$ and $\tan 60 = \sqrt{3} \text{ or } \frac{\sqrt{3}}{1}$	B1	oe stated or in correct place in implied by multiplier of 2 or eg $\frac{2 \times \frac{1}{\sqrt{2}} - 1}{4 \times \frac{\sqrt{3}}{1}}$	
29	$\frac{\sqrt{2}-1}{4\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$	M1	oe rationalisation of their denoted by $eg \frac{\frac{2}{\sqrt{2}} - 1}{4\sqrt{3}} \times \frac{4\sqrt{3}}{4\sqrt{3}}$	enominator
	$\frac{\sqrt{6}-\sqrt{3}}{12}$	A1	oe in the form $\frac{\sqrt{6a^2} - \sqrt{3}a}{12a}$ positive integer eg $\frac{\sqrt{24} - \sqrt{12}}{24}$ (when $a = 2$	
	Ad	lditional	Guidance	
	$\frac{2 \times \frac{1}{\sqrt{2}} - 1}{4\sqrt{3}}$ or $\frac{\sqrt{2} - 1}{4\sqrt{3}}$ or $\frac{\sqrt{2} - 1}{\sqrt{48}}$		B1B1	
	$\frac{\sqrt{48}(\sqrt{2}-1)}{\sqrt{48}\sqrt{48}}$ or $\frac{\sqrt{48}(\sqrt{2}-1)}{48}$		B1B1M1	
	$\frac{\sqrt{96} - \sqrt{48}}{48}$			B1B1M1A1
	B1B1 awarded, incorrect simplification	, then cor	rrect method to rationalise	B1B1M1

AQA GSCE – Thursday 8 June 2017 – Paper 2 (Calculator) Higher Tier 35.

	$\sin 72 = \frac{x}{8}$ or $8 \times \sin 72$ or $\cos (90 - 72) = \frac{x}{8}$ or $8 \times \cos (90 - 72)$ or $\frac{x}{\sin 72} = \frac{8}{\sin 90}$ or $\frac{\sin 72}{x} = \frac{\sin 90}{8}$	M1	oe eg 8 cos 72 or 2.47 or 2 and $\sqrt{8^2 - (8\cos 72)^2}$.5
	[7.6, 7.61] A1			
7	Additional Guidance			
	If trigonometry and Pythagoras are use that would lead to the correct value of x			
	Accept sin 72 × 8			M1
	Accept opp or o for x eg $\sin 72 = \frac{\text{opp}}{8}$			M1
	$\sin = \frac{x}{8} \text{ or } \sin \theta = \frac{x}{8} \text{ (unless recovered)}$	МО		
	Answer coming from scale drawing			M0A0
	Answer in range seen followed by 7 or	8		M1A1

AQA GSCE – Sample Paper 1 (Non - Calculator) Higher Tier 36.

13(a)	0.64	B1	
13(b)	$\frac{x}{4} = \cos 50^{\circ}$ or $\frac{x}{4} = \text{their } 0.64$ or $4 \times \text{their } 0.64$	M1	oe their 0.64 from (a)
	2.6	A1ft	oe ft their 0.64 from (a)

AQA GSCE – Sample Paper 1 (Non - Calculator) Higher Tier

	$\cos 30^{\circ} = \frac{\sqrt{3}}{2}$ or $\tan 60^{\circ} = \sqrt{3}$	M1	
19	4√3	A1	
	$\sqrt{48}$ or $k = 48$	B1ft	ft value seen in the form $a\sqrt{b}$ where a and b are integers > 1